
 

 
 

 

  



 

 
 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 

 

 

 

OPTIMIZING ARTIFICIAL NEURAL NETWORKS ON A 

GPU PLATFORM 

 

 

 

 

 

 

 

by 

Brian Schmidt 

 

Chair: Roy Villafane 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

ABSTRACT OF GRADUATE STUDENT RESEARCH 

 

Thesis 

 

 

Andrews University  

 

College of Technology 

 

 

Title: OPTIMIZING ARTIFICIAL NEURAL NETWORKS ON A GPU PLATFORM 

 

Name of researcher: Brian Schmidt 

 

Name and degree of faculty chair: Roy Villafane, Ph.D. 

 

Date completed: September 2011 

 

 

Problem 

 

 The size and speed required by modern applications of neural networks is 

growing continuously.  In the last decade, it has become possible to run general-purpose 

algorithms in GPUs, and much research has been done on running artificial neural 

networks on this new platform, making them faster and more efficient.  

The purpose of this thesis is to design an optimization to an Artificial Neural  

Network algorithm running on a GPU. The optimization involves using a representation  

of the data specifically designed for sparse data. Its performance was measured on  

different topologies, to determine in what situations the optimization is effective.   



 

 
 

 

Method 

The research was pursued by creating versions of the algorithm in question that 

functioned with and without the optimization, and gathering performance data while also 

varying several parameters of the algorithm, such as: number of neurons, number of 

layers, and level of connectivity. At the end, performance data were gathered and 

compared. 

 

Results 

 The test showed that the optimization performed only as expected in very specific 

topologies and situations. In all tests, the optimized version of the algorithm performed 

the feed-forward operation in less time than the un-optimized version of the algorithm. In 

some tests, the optimized version of the algorithm was able to store the weight matrices 

of the test artificial neural networks in less space than the un-optimized version of the 

algorithm. 

 

Conclusions 

  

The optimized GPU algorithm saved execution time and memory space when 

compared with un-optimized versions of the same algorithm when the proportion of 

connected neurons between layers was below 30%, and when there were many small 

layers connected together. It would be useful to apply the optimization discussed in this 

thesis in situations like these.   
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

Neural Networks Introduction 

 

The Connectionism Paradigm 

 

The connectionism paradigm is used to solve problems in several fields. It uses  

 

emergent qualities in networks of simple processing units to model behavior and find  

 

working solutions. Neural networks are an application of this field of study.  

 

Connectionist models are made up of many simple processing units that follow a  

 

common set of rules and the connections between them. One of the strengths of the  

 

connectionist paradigm is its ability to learn. Learning is accomplished by modifying the  

 

connections between units. 

 

 Connectionist models are based on emergence. Emergence is the way complex  

 

systems and patterns arise out of many simple interactions (“Emergence,” n.d.).  

 

According to Rumelhart and McClelland (1986), connectionist systems have the  

 

following parts: 

1. A set of processing units. 

2. An activation state for each unit. 

3. An output function for each unit. 

4. A pattern of connectivity among units, represented by a matrix of real numbers 

indicating connection strength. 

5. A propagation rule spreading the activations via the connections. 

6. An activation rule for combining inputs to a unit to determine its new activation. 

7. A learning rule for modifying connections based on experience. 

8. An environment which provides the system with experience (p. 46). 
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 Neural networks are considered connectionist systems because they implement  

 

each of these features. Other examples of connectionist systems are: self-organizing  

 

maps and adaptive resonance theory.  

 

 

Biological Neural Networks and the Brain 

 The brain is the most complex object known to science, and its most basic 

processing unit is the neuron. A neuron is an electrically excitable cell that processes and 

transmits information by electrical and chemical signaling. The brains of all animals are 

made up of networks of interconnected neurons that communicate to process information 

(“Brain,” n.d.).  As an example, the human brain has 10
11

 neurons, arranged in a huge 

network, and works as a parallel system (Kriesel, n.d.). By definition, the brain is a 

connectionist system with amazing emergent qualities. 

 The processing capabilities of the human brain far outperform even the most 

powerful computers in certain tasks, but are themselves outperformed by computers in 

other tasks. The function of any brain is to control the actions of an animal; to do this it 

must extract information from the senses and control the movements of the body. The 

brain is an information processing organ (Kriesel, n.d.).   

So, why is the brain of interest to computer scientists? Kriesel (n.d.) has a very 

good argument for studying the information processing capabilities of the brain. The 

hundred-step rule describes the basic difference between the biological processing that is 

done by neurons and the digital processing that is done by computers. As a rule, a simple 

modern computer can be performing only one operation at a certain moment in time, 

because of its sequential organization. However, a brain can be performing many 

operations in a certain moment in time, because of its parallel organization. According to  
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Kriesel (n.d.): “Experiments showed that a human can recognize the picture of a familiar 

object or person in 0.1 seconds, which corresponds to a neuron switching time of  10
−3

 

seconds, or 100 discrete time steps of parallel processing” (p. 5). Furthermore, a modern 

digital computer, while able to accomplish many more operations in the same 10
3
 

seconds, is not able to recognize a human face with the same efficiency of 100 time-

steps. The parallel nature of the brain is its most important quality when it comes to its 

information processing capabilities. As a side note, its biological nature also allows the 

brain to recover from injuries and rearrange itself to the changing requirements of the 

environment (Kriesel, n.d.). 

A neuron is made up of the cell body, dendrites which receive impulses from  

 

other neurons, and an axon, which sends information to other neurons. Neurons can have  

 

more than one dendrite, but they never have more than one axon. Electrical potential is  

 

maintained across the cell membrane by pumping neurons through. This is the basis of  

 

information processing and communication. When the electrical potential changes by a  

 

large enough amount, a signal is sent along the axon to the other neurons connected to it.  

 

The ability to learn is implemented through a mechanism that makes neurons that cause  

 

each other to fire, to grow stronger connections (Kriesel, n.d.). See Figure 1. 

 

 

Early Work 

 

The use of biological neurons as models for information processing has a history 

going back to the early 1940s. The first work was done by W.S. McCulloch and W. Pitts 

in 1943, who worked on models of neurological networks; they were able to show how 

simple networks were able to calculate many functions.  In 1949, Hebb created  
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             Figure 1. Structure of a neuron. 

 

 

 

a theory on the learning ability of neural networks; he postulated what is now known as 

the Hebbian Rule. In 1969, Minsky and Papert published a complete mathematical 

description of perceptrons. In 1974, Werbos published the first description of the back 

propagation algorithm, the main algorithm used for learning in neural networks (Werbos, 

1974; Davis, 2001). 

 After a slow period of several decades, neural network research increased again in  

 

the late 1970s. Stephen Grossberg and Gail Carpenter began research that led to models  

 

of adaptive resonance that would lead to the creation of adaptive resonance theory. In  

 

1982, Teuvo Kohonen researched self-organizing maps (SOMs) and published his results.  

 

At the same time, John Hopfield created a new type of neural network that now bears his  

 

name: the Hopfield network (Davis, 2001; Kriesel, n.d.).  
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Mathematical Basis 

 

 A neuron in a biological network follows rules that are encoded in its DNA, for  

 

processing information. A neuron in an artificial neural network follows mathematical  

 

rules to do the same thing.  Just like a biological neuron, an artificial neuron accepts  

 

information from other neurons, processes it, and provides information to other neurons.  

 

Also, just like its biological counterparts, a biological neuron can learn by modifying its  

 

connections to its input neurons, but instead of a chemical process, it changes parameters  

 

and performs computations to do so. 

 

 The input to a neuron can most readily be described as a vector, whose value is  

 

determined by the outputs of the neurons that are connected to it, or an outside input to  

 

the network. Kriesel (n.d.) calls this input: 

 

   

 

 However, biological neurons are able to modify their connections; this is achieved 

mathematically by associating a value called a weight with each input to a neuron. The 

weights can be stored in a corresponding vector   . To apply the associated weight to the 

value of an input, the input vector    and the weight    are multiplied together: 

      

 In order to reduce the information, the values of the weighted inputs are summed 

together, and the result is now called a weighted sum, represented as such: 

Ʃ(    ) 

 

Lastly, to provide a bounded output to other neurons, the weighted sum is passed 

through an activation function called Ω:  

Ω(Ʃ(    )) 
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which produces the scalar output of the neuron, here called Y. 

 

Y = Ω(Ʃ(    )) 

 

 The activation function is usually one of three functions: 1/(1+e
-x

), e
x^2

, or tanh(x) 

(Moore, 2009). I chose the first function for this thesis’s tests, because of its simplicity. 

 This is a simple definition of the mathematical workings of a single neuron; 

however, one neuron working alone cannot accomplish very much, so now I am going to 

mathematically describe a network of neurons. As written in Kriesel (n.d.), the definition 

of a neural network is: 

A neural network is a sorted triple (N, V, w) with two sets N, V and a function w, 

whereas N is the set of neurons and V is a sorted set {(i, j) | i, j Є N} whose elements 

are called connections between neuron i and neuron j. The function w: V -> R defines 

the weights, whereas w((i, j)), is the weight of the connection between neuron i and 

neuron j. Depending on the point of view, the function is either undefined or 0 for 

connections that do not exist in the network. (p. 36) 

 

Most importantly for the subject of this thesis, the weights, inputs, and outputs of  

 

a neural network are most efficiently stored as matrices and vectors. Furthermore, the  

 

most computationally intense part of executing a neural network is calculating the  

 

weighted sum, which is most easily described as a linear algebra problem.  

 

 

The Basic Perceptron 

 

The most basic type of neural network is the perceptron, and it is widely 

implemented. While there is not one standard to define what is meant with the term 

perceptron, most of the time it denotes a feed-forward network with shortcut connections 

(Kriesel, n.d.).  

A perceptron uses two types of neurons, input neurons and information processing 

neurons. These are organized into layers within which neurons are not connected to each 
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other. To receive information into the network, an input neuron (also called an identity 

neuron) is used. An input neuron has only one input with a fixed weight, and it serves as 

a placeholder for the network input. An information processing neuron works as 

described in the previous section, and is often fully connected to the previous layer. A 

more concise definition of a perceptron is: a feed-forward neural network in which the 

first layer is composed of input neurons, and there is one or more layers of input 

processing neurons. Finally, one layer is fully connected to the previous one (Kriesel, 

n.d.). Perceptrons can contain shortcuts, which are connections that skip a layer, but these 

are kept from the definition and will not be dealt with in this thesis.  

The most basic case of a perceptron is the single-layer perceptron (SLP), which 

contains one input layer and one output layer, and only one set of changeable weights. 

However, perceptrons can have more than one layer, and are then called multi-layer 

perceptrons (MLP). See Figures 2 and 3. 

 SLPs are not as powerful as MLPs, and are limited in the input that they can 

recognize. SLPs can only recognize output that can be linearly separable. To explain, let 

us use the AND and the XOR functions. An MLP can recognize both the AND and the 

XOR functions, but an SLP can recognize only the AND function, because the output of 

the XOR function is not linearly separable, meaning it cannot be separated into two 

different areas by a line. See Figures 4 and 5. 

As can be seen in the figures, the input/output map for the AND function can be 

separated into two areas, but the input map for the XOR function cannot, and therefore 

requires an MLP to be processed. Furthermore, an MLP is a universal function 

approximator, which is proven by the Theorem of Cybenko (Kriesel, n.d.). It is possible 
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            Figure 2. Single-layer perceptron. 

 

 

 

 

 

 

 
                  Figure 3. Multi-layer perceptron. 
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          Figure 4. Input/output map for the AND function. 

 

 

 

 
          Figure 5. Input/output map for the XOR function. 

 

 

 

for an MLP with one hidden layer to approximate a function with a finite number of 

points of discontinuity, with the appropriate number of neurons (Kriesel, n.d.). There is 

no advantage for a perceptron to have more than three layers, since any function can be 

approximated by a three-layer MLP with the appropriate number of neurons, and an MLP 

with more than three layers does not have more power.  

 Artificial neural networks have a capacity for modeling functions. The capacity of 

an ANN is determined by the number of neurons and the number of connections between 

them. A very complex function requires more neurons to be learned correctly. 

 The three-layer MLP is very commonly used. Therefore the three layers have 

 

standard names. The first layer is called the input layer, the second is the hidden layer,  
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and the last is the output layer. For the purpose of this thesis, there are then only two  

 

changeable set of weights, between the input and hidden layers, and the hidden and  

 

output layers. The weights connecting the input layer to the actual input are not trained,  

 

since they are used to accept input into the network. 

 

 

Different Topologies 

The perceptron is the simplest type of neural network, because neurons are 

grouped into layers, layers are connected in a simple fashion, and information flows in a 

single direction through the network. The perceptron model is a very constrained model, 

and more interesting opportunities become available once these constraints are lifted. 

Some of the different topologies that neural networks can take will be described. 

A perceptron is a feed-forward network, since connections are allowed to neurons 

that are in the following layers. Shortcut connections are connections that skip one or 

more layers. Networks with a shortcut connection are considered to be MLPs. 

Recurrent networks are networks in which neurons are able to influence 

themselves, by either having a direct connection to their own input, or by having a cycle 

in the graph describing their connections. Lateral recurrence occurs when neurons from 

the same layer are allowed to connect to each other. Laterally recurrent networks are not 

considered to be MLPs. Recurrent networks are more powerful than MLPs because they 

are able to influence themselves by using the results of a calculation in later calculations. 

Recurrent networks can either converge or not converge. If a network converges, then it 

returns a given output for the same input at any time. If it doesn’t converge, then it can 
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return different outputs for a given input. Some examples of recurrent networks are 

Jordan networks and Elman networks. 

Completely connected networks are networks in which all neurons can be 

connected to all other neurons. Therefore it is impossible to group neurons into layers. An 

example of completely connected, recurrent ANNs is the Hopfield network, named after 

John Hopfield, who developed them. Hopfield networks are inspired by physics models 

of the magnetic energy interactions of gases, which cause every gas particle to arrange 

itself with every other gas particle in the lowest energy state. In a Hopfield network, 

every particle influences every other particle in the same way, and the network can be 

thought of as “a cloud of neurons” (Kriesel, n.d.). Hopfield networks are used to find the 

local minima of a defined function (Hopfield, 1982). 

Another type of ANN is Self-Organizing Maps. SOMs work within two spaces: 

the N-dimensional input space and the G-dimensional space on which the neurons are 

organized. The G space is usually one-, two-, or three-dimensional, because these are 

easy to visualize (Kriesel, n.d.). The output of the network is the state of the network 

itself after a number of iterations. SOMs are able to perform unsupervised learning, and 

they are used to map a high dimensional input into a low-dimensional map (Kriesel, n.d.). 

Adaptive Resonance Theory (ART) is an extension of the basic ANN template to 

assimilate biological features of a natural brain. An ART network has two layers, the 

input layer and the recognition layer. The input layer is completely linked with the 

recognition layer, and the recognition layer is linked to the input layer. Because of this 

layout, during the operation of the network both layers affect each other, and this leads to 

resonance. The network functions by comparing the information coming in through the 
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input layer with the information stored in the recognition layer. Through this process it is 

able to accomplish unsupervised learning and pattern recognition (Kriesel, n.d.). 

A bias neuron is sometimes used to modify the behavior of a network, while not  

 

changing its topology. A bias neuron is a neuron that always has an output of 1. It is used  

 

to simplify the training and representation of a network. 

 

 

Introduction to Back Propagation and Learning 

 

 There are two ways to accomplish learning: supervised learning, in which an 

outside agent provides the knowledge needed to learn; and unsupervised learning, in 

which the network is able to teach itself, if it is given enough data from the domain to be 

learned. 

 A neural network learns by modifying the weights of the connections between its 

weights. To accomplish this, the back propagation algorithms is most often used, so 

called because it propagates the error of the output of the network backwards through the 

layers to minimize the error. When using back propagation to train a neural network, two 

things are needed: a set of network inputs, paired with a set of desired network outputs. 

Back propagation is therefore a supervised learning procedure. From these two inputs, the 

algorithm calculates the total error of the current configuration of the network and then 

the weights can be changed to minimize that error. Back propagation requires the 

activation function used by the neurons to be differentiable (Kriesel, n.d.). 

 The back propagation algorithm is composed of two steps: feed-forward and 

weight update. The feed-forward portion is the normal operation of the network, and it 

requires the training input. The weight update requires the desired output and the actual 

output of the network; from this the error can be calculated. 
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 To define the average error for the whole network mathematically: the set of 

training example pairs is called P(p, t), where p is the correct output, and the associated 

input is t,     is the input vector, and    is the output vector of the neural network. The error 

function is defined as: 

 ERR = ½(Ʃ((tp – yp)
2
)) 

The error function is defined as the mean squared sum of the difference between 

the actual and desired outputs (Kriesel, n.d.). The goal of learning is to minimize this 

error. 

 Another type of error is calculated for each individual neuron; it is called the error 

gradient, and it is needed to calculate how to modify the neurons’ weights. The error 

gradient is calculated using the derivative of the activation function, hence the necessity 

for a differentiable activation function, like this:  

ErrorGradientj = (IdealOutputj – Outputj) * F’(Outputj).  

As an example, the sigmoid activation function will be used: 

 F(x) = 1/(1+e
-x

) 

 F’(x) = F(x)*(1 – F(x)) 

Then the error gradient function becomes: 

ErrorGradientj = (IdealOutputj – ActualOutputj) * ActualOutputj * (1-ActualOutputj) 

Where j is a neuron in the network. 

 The gradient of each neuron depends on the previous layer’s error, so the 

calculation happens backwards, from the last layer to the first layer (so it is called back 

propagation). The error of a neuron in a hidden layer is calculated like this: 

 HiddenErrori = ∑(OutputErrorj * wij) * F’(HiddenOutputi) 
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Where j is a neuron in the network, and i is another neuron, and wij, is the weight for that 

input. 

The error is the summation of the output errors of the next layer and the weights 

of the connections to those neurons, multiplied by the value of the derivative of the 

activation function at the hidden neurons output. 

 To calculate the amount of change needed for each individual weight, we need 

this formula: 

 ∆wij = Outputi * Errorj 

 where outputi is the neuron’s output value and errorj is the error of the output neuron for 

that connection. Therefore, the new value for the weight will be: 

 wij = ∆wij + wij 

 Back propagation can be implemented in two ways: as either online learning or  

 

batch learning. During online learning, the weights are updated after every feed-forward  

 

pass. During batch learning, the changes to the weights are saved and the weights are  

 

updated after a determined number of forward passes (Angelou, 2010). 

 

 

Applications of Neural Networks 

 

 Artificial neural networks are classified as statistical or data mining algorithms, 

and are useful in many tasks.  Wikipedia lists some general categories of problems: 

1. Function approximation, or regression analysis, including time series prediction, 

fitness approximation and modeling. 

2. Classification, including pattern and sequence recognition, novelty detection and 

sequential decision making. 

3. Data processing, including filtering, clustering, blind source separation and 

compression. 

4. Robotics, including directing manipulators, Computer numerical control. 

(“Artificial Neural Networks,” n.d.) 
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Neural networks have been used in the following applications, and many more:  

 

radar systems (Lee, Choi, & Kim, 2003), speech recognition (Veselý, Burget, & Grézl,  

 

2010), handwritten text recognition (Ciresan, Meier, Gambardella, & Schmidhuber,  

 

2010), medical diagnosis(Sidiropoulos, Cavouras, Pagonis, Dimitropoulos, & Stonham,  

 

2009), image recognition(Scherer, Schulz, & Behnke, 2010), and anomaly detection in  

 

computer networks (Bastke, Deml, & Schmidt, 2009). 

 

 

Partially Connected Neural Networks 

 

A partially connected neural network (PCNN) is defined as a network that  

 

contains only a subset of the entire set of possible connections for a particular neural  

 

network model. They have fewer connections between layers than fully interlayer  

 

connected neural networks (FICNN) (Elizondo & Fiesler, 1997). Having fewer  

 

connections in a neural network allows for less network complexity, less storage  

 

requirements, less processing time, and less training and recall time (Elizondo & Fiesler,  

 

1997). PCNNs have been used to improve the performance of neural networks used in  

 

image processing, speech recognition, and linguistics. Elizondo and Fiesler’s (1997)  

 

study contains a good overview of PCNNs. 

 

 

GPU Programming Introduction 
 

Stream Processing 

 

 GPU programming is an application of the concept of stream processing. Stream 

processing is a computer programming paradigm (“Stream Processing,” n.d.). An 

application that uses stream processing is able to more easily and efficiently use hardware 

resources. The stream processing paradigm is made up of a set of data and the operations 
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that are to be applied to it, and is usually executed in MIMD architecture. The data used 

by the program are separated into chunks that can be processed in parallel, and the code 

that acts on these data is able to be executed transparently on many processors at once. 

Stream processing works well with applications that have three characteristics:  

1. Compute Intensity, or, a high ratio between the number of arithmetic operations 

per memory access (Fatahalian, Sugerman, & Hanrahan, 2004) 

2. Data Parallelism, which exists when an operation within the program does not 

rely on previous results to be executed and therefore allows greater flexibility in 

processing (“Stream Processing,” n.d.) 

3. Data Locality, which refers to a uniform way of accessing data within the 

program. This allows for more efficient caching (“Stream Processing,” n.d.).  

Stream processing does not excel in general-purpose computations. However, if 

an algorithm can be designed to cluster its data into a set of elements, called a stream, and 

define its operations to be done on the stream into segments of code called kernels, then it 

can use specialized processors called stream processors in its execution, sometimes 

achieving significant speed-ups (Che et al., 2008).  

 Stream processors contain specialized hardware that can execute stream 

processing programs, for example: the Cell processor from IBM, the Imagine and 

Merrimac projects from Stanford University, and most importantly for this thesis: GPUs.  

 There are many programming languages and programming language extensions  

 

that specialize in stream processing, for example: CUDA from NVidia, Brook from  

 

Stanford, and OpenCL by the Khronos group, being some of the more well-known  

 

alternatives. 
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General Description 

 A GPU is a highly specialized processor, designed for the work of rendering 

graphics. Because the high compute intensity and the parallel nature of graphics 

calculations, graphics cards started including support for these operations by adding 

GPUs in the mid-1990s. HP, Sun Microsystems, and SGI were the first to include 3D 

acceleration support in their workstations in 1996; however, they were not available to 

normal users. The company 3dFX introduced the first true commercial GPU for the 

general public in 1997, with the release of their Voodoo Graphics chipset. This was later 

followed by the NVidia GeForce, and many others (Davis, 2001). These days, every 

gaming system of sufficient complexity contains a 3D accelerator, which has caused the 

per-unit cost of a GPU to drop because of the economies of scale (Boggan & Pressel, 

2007).   

 The first GPUs were not programmable and were not useful for general purpose  

 

computations. However, in 1999, NVidia introduced the first programmable operations  

 

on a GPU. In 2002, ATI introduced floating point calculations on their Radeon 9700  

 

model (Owens et al., 2007). Using these hardware capabilities and native graphics  

 

interfaces, users started to use GPU hardware for general purpose calculations. GPUs  

 

were not easily programmable, however, until the introduction of the CUDA framework  

 

by NVidia in 2006, which was the first framework for doing GPGPU calculations.  

 

 

Hardware Model 

 Modern GPUs are implemented as circuits that can reside in the same die as the 

host processor, board, with shared or separate memory. GPUs and graphics cards are 

often connected to the host CPU using PCI Express, AGP, or PCI interfaces.  
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 The graphics pipeline is built from vertex processors, rasterizers, fragment  

 

processors, and a frame buffer. The two components of the graphics pipeline that are  

 

most heavily utilized during GPU computation are the vertex and fragment processors  

 

(Davis, 2001). At the beginning of the pipeline, the GPU accepts vertex data from the  

 

application running on the CPU. These data go into the vertex processor, which does  

 

transform and lighting operations. The modified vertices are grouped into graphics  

 

primitives and are then sent to the rasterizer where they become a stream of image  

 

fragments for each pixel covered by the primitive. The rasterizer is not programmable  

 

and therefore is not useful for GPGPU. The fragments then enter the fragment processor.  

 

The fragment processor performs tests to determine if the fragment should be shown in  

 

the final image. If a fragment passes the tests, then it is written to the frame buffer for  

 

display (Boggan & Pressel, 2007; Davis, 2001). See Figure 6. The vertex and  

 

fragment processors are most heavily used during GPU computation (Davis, 2001).  

 

However, modern GPU architectures have now combined the fragment and vertex  

 

processor into one type of processor called a Streaming Multiprocessor. The architecture  

 

of GPUs is SIMD, and they fall into the category of vector processors. 

 

As an example, the NVIDIA Fermi architecture will be used, which is designed to  

 

adapt the GPU graphics capabilities to be used for scientific calculations. The GPU chip  

 

contains the L2 cache, the processing cores, the memory interface, the global scheduler,  

 

and the host interface. The first Fermi GPU contained 16 SMs with 32 cores each, for a  

 

total of 512 processing cores. The memory interface is 384 bits wide, and supports up to  

 

6 gigabytes. The host interface is PCI Express. Each SM contains a common instruction  

 

cache, schedulers, dispatch units, a register file, shared load/store units, shared special  

 



 

19 

 

 

Figure 6. The graphics pipeline. From “A Survey of General-Purpose Computation on     

Graphics Hardware,” by J. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger,  

A. Lefohn, & T. Purcell, 2007, Eurographics 2005, State of the Art Reports, 2005, pp. 

21-51. Copyright 2005 by the Eurographics Association. Reproduced with permission. 

 

 

 

 

function units, an L1 cache, and the interconnect network. The L1 cache allows for faster  

 

communications between threads working in the same SM. The special function units  

 

calculate functions like sine, cosine,  and square root. Since each SM has two thread  

 

schedulers and dispatch units, each SM is able to execute two different threads on its  

 

cores concurrently. The Fermi architecture supports double precision floating point  

 

operations.     

 

Each processor core contains one operand collector, a floating point ALU unit,  

 

and an integer ALU. The processor cores are extremely simple, when compared to  

 

normal CPU cores. Since cores within an SM operate in lockstep fashion, the two  

 

schedulers can be shared between all of the cores. The load/store units are also shared  
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between all of the cores. Finally, the special function units are shared between the cores.  

 

All of these architectural features allow the GPU to dedicate many more transistors to its  

 

ALUs, giving it the arithmetic throughput it is known for (NVidia Corporation, 2008).  

 

See Figure 7. 

 

 

Software Model 

 As mentioned before, a GPU follows the stream processing model. Therefore, it 

works by invoking one instance of a kernel on a single stream element. The operations 

that are possible for kernels to do on a GPU fall under several categories: map, reduce, 

stream filtering, scatter, gather, sort, and search.  

The map operation applies a function to every input element, producing a  

 

modified output of the same size. The reduce operation takes an input stream and outputs  

 

a smaller output stream; it can be used to compute the sum or the maximum of a stream.  

 

Read and write operations on a GPU are called scatter and gather operations when  

 

memory is accessed indirectly. A gather operation is easily done, but a scatter operation  

 

is not implemented and requires extra programming steps. The stream filtering operation  

 

removes elements from the stream based on given criteria. The sort operation transforms  

 

an unordered set of elements to an ordered set of elements. The search operation is used  

 

to find a certain element within a stream, and possibly the nearest neighbors to that  

 

element (Owens et al., 2007). 

 

 Because of the limitations of the memory model of GPUs, the data structures most 

often used are two-dimensional arrays, also called textures. With these, it is possible to 

represent dense or sparse multidimensional arrays that are static or dynamic. Also, it is 

possible to store adaptive structures such as: quadtrees, octrees, kNN-grids, and k-d trees  
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Figure 7. Fermi streaming multiprocessor. From “NVIDIA Fermi Compute Architecture 

Whitepaper,” 2009, retrieved from NVidia website: 

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com 

pute_Architecture_Whitepaper.pdf. Copyright 2009 by NVIDIA Corporation. 

Reproduced with permission. 
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(Owens et al., 2007). All of these data structures require programming effort to 

implement, and are abstractions. 

 The programs written for this thesis will use the CUDA framework. The CUDA  

 

framework uses threads. A CUDA thread is organized by the compiler or the programmer  

 

into thread blocks and grids of thread blocks, where each thread belongs to a block, and  

 

each block belongs to a grid. Each thread is an instantiation of a kernel, with its own  

 

thread id, program counter, registers, private memory, inputs, and outputs. Each thread  

 

block contains shared memory for communication between threads. Also, grids can share  

 

results in global memory after thread synchronization. See Figure 8. 

 

 

Strengths and Weaknesses 

Computer graphics chips are today’s most powerful computational hardware for  

 

their cost. Because of the economy of scale of the video game industry and its strong  

 

demand for 3D computer graphics, GPU cards have become relatively cheap (Boggan &  

 

Pressel, 2007). In 2005, the ATI X800 XT GPU was available for $447, and it could  

 

outperform a comparable CPU four times over (Owens et al., 2007). As of 2011, GPUs  

 

are used to power the most powerful computer on earth (“Tianhe-1,” n.d.). 

 

However, they have several weaknesses. Because of their lack of independent  

 

schedulers for each core, modern GPUs cannot perform conditional branching efficiently.  

 

If a conditional branch on a core diverges during execution from the rest of the cores in  

 

the SM, then the performance of the SM will degrade (Davis, 2001). This limits the types  

 

of algorithms that can achieve good performance on a GPU. 

 

 Because of its data access and caching architecture, GPUs require coalesced  

 

memory accesses to achieve the maximum throughput available. In practice this means  
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Figure 8. CUDA thread and memory hierarchy.  From “NVIDIA Fermi Compute        

Architecture Whitepaper,” 2009, Retrieved from NVidia website: 

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Com 

pute_Architecture_Whitepaper.pdf. Copyright 2009 by NVIDIA Corporation. 

Reproduced with permission. 

 

 

 

designing kernel programs so that each thread created from them will access adjacent  

 

memory locations which can be easily joined into one memory operation (Bell &  

 

Garland, 2008). This requirement limits the number of algorithms that can be ported to  

 

the platform.  

 

GPUs are by design co-processors, and require a communication channel with the  

 

host processor. Therefore, time is required to transfer results back to main memory.  
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However, this limitation has been largely lifted by the introduction of the PCI-Express  

 

Bus (Boggan & Pressel, 2007). 

 

 

Programming Recommendations 

 

The following recommendations have been gathered from previous research.  

 

First, keep memory transfers between the CPU and GPU to a minimum. Second, keep the  

 

number of kernels used in a program to a minimum. And third, since modern GPU  

 

programming tools do Just-In-Time compilation for kernel programs, we should perform  

 

these only once in every program.  

 

 

Hardware Used Throughout This Thesis 

 

 To test the claims of this thesis a workstation was used. The CPU is  

 

an AMD 6 core Phenom X6 running  at 2.80 GHz and is a 64-bit CPU; it has 16 GB 

 

of memory. The same workstation is connected to an NVIDIA GEFORCE GTX 560 Ti  

 

graphics card, with a GF100 Fermi core running at 900 MHz. It has 1 GB of memory  

 

running at 1026 MHz; the memory interface is 256 bits wide and the memory is DDR5. 

 

The maximum theoretical bandwidth is 128.27 GB/second. The compute capability of the  

 

card is 2.1. 

 

 

Suitability for Neural Networks and Reasoning 

 

 Because of the nature of neural networks, they are very well suited for execution 

on GPU. As previously mentioned, an algorithm must fulfill three requirements to be 

amenable to execution on a stream processor. Neural networks have high compute 

intensity per memory access. Neural networks have a high level of data parallelism since 

a neuron can execute separately from all others if its input data are available. And lastly, 
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neural networks access data in regular patterns, which helps in caching. Davis (2001) 

explains it like this: 

The GPU is very good at linear algebra operations because of the pipelined and 

parallel architecture. Most artificial neural networks rely heavily on linear algebra  to 

implement their neurons, connection weights, activation functions, etc.; and as a 

result artificial neural networks are generally more amenable to execution on the  

GPU than general purpose computations. (p. 21) 

 

Because of these reasons, the purpose of this thesis is combining the areas of  

 

neural networks and GPU programming, and finding ways to make the combination  

 

better. 

 

 

Review of Previous Work 
 

A simple feed-forward perceptron has been implemented for a GPU many times,  

 

and several papers have been published about it. Prabhu (2007) published a paper that  

 

included a description of back propagation learning on the GPU. He found that the CPU  

 

version performed better when the network was smaller than 100-200 neurons, because  

 

the GPU requires time to launch kernel programs and perform memory transfers. For  

 

larger networks, however, the GPU gained a marked advantage. Luo, Liu, and Wu (2005)  

 

also describe another implementation of an MLP on a GPU, resulting in a speedup of  

 

around 200 times. Lahabar, Agrawal, and Narayanan (2008) showed an implementation  

 

of an MLP with back propagation. Training of the network was 90-110 times faster than a  

 

MATLAB implementation and 120-140 times faster than a FANN implementation. The  

 

network ran 40 times to 50 times faster on the GPU than in MATLAB, and 55 times to 70  

 

times faster than a FANN implementation. Both Moore (2009) and Hovorka (2010) used  

 

a GPU to run recurrent NNs. 

 

Bohn (1998) coded an implementation of a Kohonen map on a GPU. Because of  
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the lack of programming tools for GPUs at the time, the program was written with  

 

OpenGL function calls. The SOM was able to achieve a speedup of 500% on large  

 

dimensional inputs, when compared to a CPU implementation. Luo et al. (2005) describe  

 

another implementation of a SOM, with similar results as Bohn’s (1998); however, they  

 

use newer hardware and are able to remove some of the restrictions that Bohn had. Raina,  

 

Madhavan, and Ng (2009) coded an implementation of a Deep-Belief Network and  

 

sparse coding on a GPU, used to perform unsupervised learning on large data sets. 

 

Neural networks running on GPUs have been used in several applications. For  

 

example, Bastke et al. (2009) used probabilistic neural networks running on GPUs to  

 

detect network intrusions. Scherer et al. (2010) used convoluted neural networks running  

 

on a GPU to speed up image recognition 8.6 times over a CPU version. In a similar  

 

paper, Uetz and Behnke (2009) used a GPU to train convolutional neural networks to  

 

recognize handwritten characters, achieving a speed-up of 80 times during normal  

 

operation and a maximum speed-up of 110 times for the back propagation training.  

 

Ciresan et al. (2010) used GPUs to speed up the training of deep NNs, used for  

 

handwritten letter recognition.  

 

Veselý et al. (2010) used a GPU to train neural networks for speech recognition,  

 

on the real-world phoneme-state classification task, showing a nearly 10 times speed-up  

 

when using a CUDA version, as compared to a single-thread version. Sidiropoulos et al.  

 

(2009) used GPU to speed up the training of a probabilistic neural network in the  

 

diagnosis of mammograms, achieving significant speedups with identical classification  

 

results.  

 

Bernhard and Keriven (2006) use GPUs in the similar field of spiking neuron  
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simulation, which seeks to simulate the way that biological neurons operate, achieving a  

 

speed-up of 5 times to 20 times. Bhuiyan, Pallipuram, and Smith (2010) achieved a  

 

speed-up of 9.5 times for a network of 5.8 million spiking neurons. Nageswaran, Dutt,  

 

Krichmar, Nicolau, and Veidenbaum (2009) achieved a speed-up of 24 times faster over  

 

a CPU version for the simulation of 100K neurons with 50 million synaptic connections,  

 

firing at an average rate of 7Hz. Yudanov, Shaaban, Melton, and Reznik (2010)  

 

implemented a spiking neuron simulation on the GPU with real-time performance,  

 

achieving a speed-up of 8 times to 9 times compared to a CPU simulation. 

 

The need for linear mathematics operations in scientific computing and the  

 

necessity for high performance computing in scientific computing has generated a lot of  

 

research in the area of matrix and vector operations on GPUs. There have been many  

 

papers written about performing linear algebra operations on a GPU, and a few papers  

 

specifically on efficient sparse matrix multiplication on a graphics card. In an early paper,  

 

Larsen and McAllister (2001) implemented matrix multiplication on a GPU and  

 

concluded that the algorithm was limited by the low precision hardware available at the  

 

time; his GPU implementation was not faster than a comparable CPU version. Hall, Carr  

 

and Hart (2003) did similar research, but took into account the GPU’s memory  

 

layout and connection to the CPU, and found that the execution times where about the  

 

same as a CPU implementation, the reason being the constraints of GPU programming as  

 

well as the low-bandwidth connection of the GPU to the CPU. Fatahalian et al. (2004)  

 

analyzed the performance of matrix multiplication operations and the previous work, and  

 

confirmed that GPUs were not able to outperform an optimized CPU implementation,  

 

despite the fact that matrix multiplication is a natural fit for stream processors. They  
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found that the GPU algorithm was able to use only between 17% and 19% of the  

 

arithmetic unit’s time, despite the bandwidth usage being near the maximum capacity of  

 

the card, while CPU versions had nearly 65% arithmetic efficiency. They concluded that  

 

the algorithm used was near-optimal for the current hardware, and without significant  

 

redesign to the architecture of GPU, the performance would not get any better. With the  

 

development of GPU architectures, linear algebra performance improved considerably.  

 

Volkov and Demmel (2008) did a comparison of the performance of dense linear algebra  

 

algorithms on several modern GPU platforms, as well as an optimized CPU version.  

 

They found that performance scaled linearly according to the number of SPs on the GPU,  

 

and although the CPUs were able to achieve greater efficiency, they were still more than  

 

two times slower than most GPU implementations. With the improvement of hardware,  

 

linear algebra problems can now be solved efficiently on GPUs (Moravánszky, 2003). 

 

With the improvement of linear algebra calculations on the GPU, it can be seen  

 

that NNs will correspondingly perform better on a GPU than on a CPU. However, the  

 

subject of this thesis is sparsely connected neural networks, and therefore what is needed  

 

is to find out about the performance of sparse linear algebra operations on the GPU. Bell  

 

and Garland (2008) have written a detailed analysis of sparse linear algebra on GPU  

 

hardware, including memory-saving storage methods and bandwidth efficient kernels.  

 

Their study also includes a performance analysis, comparing GPU performance to CPU  

 

performance. The authors find that the double precision sparse matrix vector  

 

multiplication performance of their algorithm is generally two and a half times that of a  

 

Cell BE with 8 SPs and more than 10 times greater than that of a quad-core Intel  

 

Clovertown system (Bell & Garland, 2008). 



 

29 

 

In-depth Description of the Problem and Motivation 

 

 As mentioned, neural network computations reduce easily to linear algebra 

operations. However, not all neural networks have the same structure and, therefore, it 

might be possible to tailor the linear algebra operations used to execute the neural 

network so that performance can be  increased. 

 The data representing the weights of a neural network are most easily stored in a 

matrix format, where the row number indicates the neuron where the connection begins, 

and the column number indicates the neuron where the connection ends. In this 

representation, a missing connection between neurons would be represented by a zero. By 

this description, an SLP would require just one weight matrix, and an MLP would require 

two or more weight matrices for storage. Furthermore, if two layers in the network are 

partially connected, then the weight matrix between would also be sparsely populated.  

 Sparse matrix computation is a special field of linear algebra that deals with the 

representation and computation of matrices that contain many elements that are set to 

zero (“Sparse Matrix,” n.d.). While dense operations are regular and are often limited by 

floating point throughput, sparse operations are much less regular and are often limited 

by bandwidth (Bell & Garland, 2008). Because of these findings, it might be useful to try 

a specialized algorithm to gain the benefits of less memory usage and faster computation. 

 By applying an optimization from the field of sparse linear algebra computations 

on GPU processors, a feed-forward perceptron that is partially connected will gain two 

things: less space used because of the compressed structure of the data structures used, 

and faster performance, because of the parallel structure of GPUs and the fewer 

calculations required by the optimized algorithm.   
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CHAPTER 2 

 

 

METHODS USED 

 

 

Explanation of the Proposed Method  

There are many ways to compress sparse matrices, based on their features. Sparse 

matrices can be classified into two general categories: structured and unstructured 

matrices. Structured matrices have an easily distinguishable pattern in their non-zero 

entries which can be used to compress their information. Unstructured matrices don’t 

have a pattern in their non-zero entries and require a more general compression scheme. 

Bell and Garland (2008) provide a very good description of many formats 

especially designed for sparse matrix storage. In this thesis, however, it is not necessary 

to cover formats specifically designed for quick insertion and deletion of elements. Some 

formats are: the diagonal format (DIA), which is specialized for matrices containing their 

non-zero entries along the center diagonal, the ELLPACK format (ELL), which is 

specialized for matrices in which every row has close to the same number of zeroes, and 

the coordinate format (COO), which is a general storage format, since it can be applied to 

a matrix of any structure, consisting of a tuple for every no-zero entry containing the 

elements: row, column, data. The Compressed Sparse Row format is an extension of the 

COO format; it sorts the data for faster access and it adds a compression scheme for oft-

repeated row numbers. The hybrid format (HYB) combines the best features of the COO 
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and ELL formats. The packet format (PKT) is used for diagonal matrices and vector 

architectures.   

The proposed solution is composed of a new data structure and a new algorithm. 

The data structure will be described first. Neural networks don’t have a pattern in the 

non-zero entries of their weight matrices, since this is very unlikely to happen in real-

world learning; therefore the matrices containing the weights are unstructured. 

The ELL format is very effective when the matrix has close to the same number 

of non-zero entries in every row. For a sparse matrix that is to be stored, a matrix is 

allocated with the same number of rows as the original matrix, and the maximum number 

of non-zero entries in any of its rows as the number of columns. Then the non-zero 

entries are packed into the smaller matrix, and then padded with zero values. The row 

number of a non-zero element in the matrix is stored in another matrix. As an example of 

a matrix: 

A  = [ 1 7 0 0] 

        [ 0 2 8 0] 

        [5 0 3  9] 

        [ 0 6 0 4] 

Becomes:   

 

Data =  [ 1 7 * ]   Indices= [ 0 1 * ] 

 [ 2 8 * ]       [ 1 2 * ] 

 [ 5 3 9 ]       [ 0 2 3 ] 

 [ 6 4 * ]       [ 1 3 * ] 

 

The coordinate format (COO) is a simple data structure which holds a three- 

element tuple for every non-zero element in the matrix. Each tuple contains the row 

index, the column index, and the data. The COO format is easy to use, and its storage 

requirements rise linearly with the number of non-zero elements in the matrix. As an 

example: 
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A =  [ 1 7 0 0 ] 

        [ 0 2 8 0 ] 

        [ 5 0 3 9 ] 

        [ 0 6 0 4 ] 

 

Becomes: 

Row =   [ 0 0 1 1 2 2 2 3 3 ] 

Column =  [ 0 1 1 2 0 2 3 1 3 ]    

Data =   [ 1 7 2 8 5 3 9 6 4 ] 

 

By combining both formats one is able to get the benefits of both, while 

minimizing the drawbacks. The formats are combined by finding the typical number of 

non-zero entries per row in the sparse matrix, and then allocating an ELL matrix to store 

these entries, then using the COO format to store the remaining entries (Bell & Garland, 

2008). 

Similar to the data structure, the algorithm used for this optimization is a 

combination of the COO and ELL algorithm. In the ELL algorithm, one CUDA thread is 

assigned to each row of the matrix; the additions are performed in a for-loop and are 

summed together within the kernel and stored in the result vector. The matrices are 

linearized into vectors to enable the GPU to easily coalesce memory accesses. The COO 

algorithm uses a segmented reduction to allow it to assign one thread block to work on 

multiple rows of the matrix, with a final reduction across blocks to sum the results 

together. The COO algorithm is usually slower than the ELL algorithm; however, by 

combining both data structures and corresponding algorithms, the HYB algorithm 

outperforms all others on a GPU. Assuming that most non-zeros belong to the ELL 

portion, performance of the HYB sparse matrix vector multiplication operation will most 

resemble that of the ELL kernel (Bell & Garland, 2008). 

According to the hardware model, in order for an algorithm to fully use the  
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resources of the GPU, it needs to coalesce memory accesses and keep threads executing  

 

in the same block from diverging in execution. According to Bell and Garland (2008), the  

 

algorithm and data structure with the highest FLOP performance for single-precision  

 

unstructured matrices is the hybrid format, therefore this format was chosen for this  

 

thesis’s tests. This format also has fairly good data compression. 

 

 

Analytical Evaluation of the Proposed Method 

 

Space Complexity 

 

 The memory usage of each weight matrix in the un-optimized algorithms is  

 

described by this formula:  

 

memory usedlayer = m
2 

 

where m is the number of surons per layer. The total memory used for the neural  

 

network is: 

 

 memory usedtotal =  ∑ 
   memory usedk 

where n is the total number of layers in the neural network, and memory usedk  is 

the amount of memory used in that particular weight matrix. 

The data structure design for each un-optimized algorithm is slightly different,  

 

which will cause the programs to give slightly different total memory usages, when they  

 

should be the same. The GPU un-optimized version uses “flattened” matrices to more  

 

easily transfer its data, therefore it uses fewer pointers, which means it will use a different  

 

amount of memory than an equivalent CPU un-optimized neural network. 

 

 As mentioned, the compression scheme that was chosen for the tests is the HYB  

 

format. This format uses a combination of the ELL format and the COO format. The  
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memory usage
 
of the optimized algorithm is described by the formula: 

 

 memory usedell =   2(i*j) 

 

 where i is the number of columns in the ELL portion of the data structure, and j  

 

is the number of rows in the ELL portion of the array. 

  

 memory usedcoo = 3k 

 

 where k is the number of elements in the COO portion of the matrix. To combine  

 

the two formulas: 

 

 memory usedlayer = memory usedell + memory usedcoo  

 

 The heuristic used to divide a sparse matrix is described like this: “Our  

 

implementation computes a histogram of the row sizes and determines the largest number  

 

K such that using K columns per row in the ELL portion of the HYB matrix meets a  

 

certain objective measure” (Bell & Garland, 2009, p. 5). The objective measure is  

 

determined from statistics gathered beforehand. To calculate the amount of memory used  

 

by a neural network using this compression scheme, this formula is used: 

 

 memory usedtotal =  ∑ 
   memory usedk  

 

where n is the total number of layers in the neural network, and memory usedk  is  

 

the amount of memory used in that particular weight matrix in the network. 

 

The best compression ratio is achieved when the matrix has the same number of  

 

non-zero elements in every row, allowing the program to use the allocated ELL space  

 

fully, not needing to use the less-efficient COO format. The worst compression ratio  

 

occurs when all of the non-zero elements are grouped in one row of the matrix. This  

 

forces almost all of the elements to be stored in the COO portion of the data structure.  

 

The compression ratio is hard to determine beforehand without knowing details about the  
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structure of the sparse matrix to be compressed. 

 

 

Time Complexity 

 

 I will now analyze the time complexity of every algorithm individually. The non- 

 

optimized CPU algorithm has a time complexity of: 

 

 jm
2
 +jn  

 

where j is the number of layers, m is the number of rows and columns (since all of  

 

the matrices in this thesis are square), and n is the computational cost of the transfer  

 

function (a fixed cost).  

 

The non-optimized GPU algorithm has a time complexity of: 

 

  (
    

 
) 

 

 where j is the number of layers, m is the number of rows and columns, n is  

 

the cost of the transfer function, and k is the thread parallelization factor. The thread  

 

parallelization factor is introduced to describe the hardware configuration of a GPU,  

 

where each row in a matrix vector product is calculated by a single thread running in  

 

parallel with many others. The factor k is affected by many runtime variables, such as the  

 

GPU model used, the presence of other programs in the system using the GPU, etc. In  

 

this formula, j also includes the kernel launch time, which is an overhead incurred by the  

 

hardware used. 

 

 As previously mentioned, the algorithm used for the HYB data structure is a  

 

combination of the ELL and COO kernels. Bell and Garland (2008) state that the  

 

performance of the HYB kernel is most influenced by the ELL portion of the combined  

 

kernel, since the ELL portion of the data structure usually holds more information. The  

 

best-case scenario for the algorithm would occur when the non-zero values are distributed  
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evenly across all rows, allowing each thread to process the same amount of elements,  

 

producing fully-coalesced memory accesses and non-divergent execution. The worst-case  

 

scenario would occur when all of the non-zero values are located on one row of the  

 

matrix, meaning that one thread would be required to handle all of the elements in the  

 

matrix. 

 

To solve for the optimized version of the algorithm, a special variable needs to be  

 

introduced: nz which stands for the proportion of elements in a certain matrix that are not  

 

zero. 

 

   
    

   

 
  

 

 where j is the number of layers, m is the number of rows and columns, n is the  

 

cost of the transfer function, k is the thread parallelization factor, and nz is the proportion  

 

of non-zero elements in the matrix to the total number of possible elements in the matrix. 

 

This factor can take any real value in the range: [0, 1]. 

 

 The worst case for all algorithms can be described by the big O notation as: 

  

 O(x
2
) 

  

  where x is the number of neurons per layer. 

  

 The hardware that I am dealing with in this thesis contains many cores, and  

 

must be dealt with specifically. Amdahl’s law tells us what speed-up we can expect when  

 

using a single processor. Hill (2008) did further research that updated Amdahl’s law to  

 

reflect the rise of multicore processors like GPUs. Figure 9 shows the predicted speed-up  

 

of a program running on multiple cores. Factors include: software fraction that is  

 

parallelizable (f), total chip resources in BCEs (n), and the BCE resources (r) devoted to  

 

increase the performance of each core. The x axis is the number of cores, and the y axis is  
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the predicted speed-up. The formula used to generate this graph came directly from Hill  

 

(2008, p. 2):  

  

                 
 

 
   

       
   

   

         
 
  

 

 where perf(r) is equal to   . For more details, see Hill (2008). 

 

 

 

 
Figure 9. Speed-up of symmetric multicore chips.  

 

 

 

Description of the Experiments 

 

For this thesis, three versions of the feed-forward part of the ANN algorithm were 

tested. Specifically: the ANN feed-forward algorithm for the CPU without any 

optimization and the ANN feed-forward algorithm for the GPU with and without the 

optimization. In the GPU programs, the memory transfer time was not included in the 

execution time, but the kernel launch time was included. 
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I created three programs to perform the tests; the programs received parameters 

from a script, saving their results to a file. The first program uses only the CPU, and it is 

used as a baseline. I modified the code from Chhabra (2006) for my own purposes. The 

second program is an un-optimized, naïve implementation of the algorithm on the GPU 

using CUDA; I coded this program myself based on the work of Steinkraus, Buck, and 

Simard (2005), Scherer et al. (2010), and Chellapilla, Puri, and Simard (2006). The third 

program uses the CUSP library, which is a library specialized for performing sparse 

linear algebra on the CUDA framework, based on the research from Bell and Garland 

(2008). The programs run on a UNIX system and use a system service to measure elapsed 

time, accurate down to the nanosecond. Each program performs each test a certain 

number of times, and the results are then averaged and saved. This is done so that a single 

discrepancy in the results does not affect the final result. For every test, a neural network 

is generated according to the parameters passed to the program and then filled in with the 

correct number of connections; the connections are placed randomly between the layers 

in the ANN. 

Two separate sets of tests were run: one set to measure the time complexity of the 

algorithm, and one set to measure the space complexity of the algorithms. While holding 

all other variables at the same level, these variables were changed: the number of 

connections between layers, the number of neurons in a layer, and the number of layers in 

the tested ANN. This makes for a set of 18 tests that were used to measure the 

performance of this optimization. Since the variables are the same for sets of three tests, 

one from each algorithm coded, the results are directly comparable; therefore, six 

separate charts have been generated to compare the results from the three algorithms. The 
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default values for each test were: 50 neurons per layer, 5 layers, and fully connected 

layers.  

To simplify testing, all layers in an ANN had the same number of neurons,  

 

meaning that all of the weight matrices were the same size. The neural networks used in  

 

this thesis were specifically designed to show the performance of certain parts of each  

 

algorithm, and not to test every possible topology. 

  

 

Analysis of the Results 
 

In Figure 10, the bound variable is the number of neurons per layer, which ranges  

 

from 1 neuron to 100 neurons, giving 100 data points. The unbound variable is execution  

 

time. Other variables are: number of layers, which is equal to five in this test, and  

 

connection proportion, which is 100% in this test. The results for the CPU un-optimized  

 

and GPU un-optimized programs agree with both results from previous research. As  

 

shown in previous research it is more efficient to execute smaller neural networks in the  

 

CPU. The optimized GPU algorithm performed the feed-forward pass in less time than  

 

the other algorithms in every portion of this test. 

 

In Figure 11, the bound variable is the number of neurons per layer, which ranges 

from 1 neuron to 100 neurons, giving 100 data points. The unbound variable is memory 

space. Other variables are: number of layers, which is equal to five in this test, and 

connection proportion, which is 100% in this test. The un-optimized CPU version and the 

un-optimized GPU version of the algorithm used about the same amount of memory, with 

the un-optimized GPU version using much more memory.  

In Figure 12, the bound variable is the number of layers, which ranges from 1 

neuron to 100 layers, giving 100 data points. The unbound variable is execution time. 
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Other variables are: number of neurons per layer, which is equal to 50 in this test, and 

connection proportion, which is 100% in this test. The results for the CPU un-optimized 

and GPU un-optimized programs are as expected from previous research, both of them 

increasing linearly with the number of layers. The optimized GPU program performed 

the feed-forward pass faster in every portion of this test. 

In Figure 13, the bound variable is the number of layers, which ranges from 1 

neuron to 100 layers, giving 100 data points. The unbound variable is memory space. 

Other variables are: number of neurons per layer, which is equal to 50 in this test, and 

connection proportion, which is 100% in this test. The un-optimized CPU and un- 

optimized GPU version of the algorithm used almost the same amount of memory. The 

optimized GPU version of the algorithm used significantly less memory than the others; 

however, the trend that it follows would cause it to use more memory that its counterparts 

if the test continued. 

In Figure 14, the bound variable is the connection proportion, which ranges from 

1% to 100%, giving 100 data points. The unbound variable is execution time. Other 

variables are: number of neurons per layer, which is equal to 50 in this test, and the 

number of layers, which is set to 5. The optimized GPU algorithm performed 

significantly better than the un-optimized CPU and un-optimized GPU versions. In all 

three tests that measured execution time, the optimized version of the algorithm 

performed the feed-forward pass faster than the un-optimized algorithms.  

In Figure 15, the bound variable is the connection proportion, which ranges from  

 

1% to 100%, giving 100 data points. The unbound variable is memory space. Other  

 

variables are: number of neurons per layer, which is equal to 50 in this test, and the  
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number of layers which is set to 5. The un-optimized CPU and un-optimized GPU  

 

versions of the algorithm used a constant amount of memory, which means that no matter  

 

how many connections exist in the layers of the networks, the same amount of memory  

 

will be used. The optimized GPU algorithm used less memory than the others, when the  

 

connection proportion was less than about 30%.  

 

From the data produced by the programs, it is evident that the predictions of this  

 

thesis have proven to be true. This thesis claimed that any feed-forward perceptron that is  

 

partially connected would be able to benefit from less space used in memory and less  

 

processing time used in its feed-forward pass. As predicted, the partially connected  

 

networks used less memory than the fully connected networks. However, every network  

 

that executed with the optimized GPU algorithm was able to execute faster than the non- 

 

optimized CPU and GPU versions of the algorithm, regardless of the level of connectivity  

 

of the network. The results of three tests are graphed in Figures 10-15. In all tests, time  

 

was measured in nanoseconds, and space was measured in bytes. 

 

 

 

 
    Figure 10. Test results, x: number of neurons per layer, y: execution time. 
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Figure 11. Test results, x: number of neurons per layer, y: memory used. 

 

 

 

 
Figure 12. Test results, x: number of layers, y: execution time. 

 

 

 

0

100000

200000

300000

400000

500000

600000

700000

1 11 21 31 41 51 61 71 81 91

CPU UNOPTIMIZED

GPU UNOPTIMIZED

GPU OPTIMIZED

0

500000

1000000

1500000

2000000

2500000

3000000

1 11 21 31 41 51 61 71 81 91

CPU UNOPTIMIZED

GPU UNOPTIMIZED

GPU OPTIMIZED



 

43 

 

 

 
Figure 13. Test results, x: number of layers, y: memory used. 

 

 

 

 
Figure 14. Test results, x: number of connections per layer, y: execution time.  
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Figure 15. Test results, x: number of connections per layer, y: memory used. 
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CHAPTER 3 

 

 

CONCLUSION 

 

 

Statement of the Results 

 

 The data prove that it is feasible to use this optimization to perform the feed- 

 

forward pass on a perceptron faster when running in a GPU, in the right situation. Also,  

 

in situations where the inter-layer connectivity of the NN is less than 30%, it takes less 

 

space to use the optimized GPU algorithm. 

 

 

Conclusion 

 Previous research dealing with neural networks running in GPUs has proven that 

 

it is a very good platform for the problem. This thesis has sought to extend the research  

 

by trying to apply an optimization from a related field.  

 

 In terms of execution time, the optimized algorithm proved to be faster than the 
 

 

un-optimized algorithms in all three tests. In terms of storage space used, the optimized  

 

algorithm used more space than the un-optimized algorithms in two of the three tests  

 

performed, and only used less memory than the un-optimized algorithms when the level  

 

of connectivity of the neural network tested was less than around 30%.  

 

 

Future Work 

 

 There are several ways in which this research can be continued. There are many  
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different storage formats for sparse matrices, and this thesis used only the most promising  

 

one; other storage formats could be tested and their performance measured.  

 

The number of tests that were run was limited by the time available to implement  

 

the programs and run the tests. To keep the results simple and easy to understand, this  

 

thesis deals only with a small part of the possible topologies of a neural network. Further  

 

research could be done on non-square matrices and their effect on the performance of the  

 

algorithm.  

 

The neural networks programmed on the GPU required that a kernel be launched  

 

for every layer in the network. This is a shortcoming in the design of the GPU programs  

 

that were used.  However, it might be possible to code the algorithm in one kernel and  

 

therefore make the execution time more efficient. 
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